
N

The views expresed in this paper ae dinou of die author
CVn md do not neeomzily reflect de view$ of the

* N Department of Defens or any of ift Mpcm. This
document may not be relemad for open publication unil
it hau been deared by dh appropriate military wrvce or
government agency.

iI

THE UTILITY OF ADA FOR ARMY MODELING

BY

COLONEL MICHAEL L. YOCOM

DISTRIBUTION STATEMENT A: Approved for publie

releases distribution is unlimited.

1% LF-, EC TE DRS91

V*JUN2 6 tg
10 APRIL 1990 SP BI)

U.S. ARMY WAR COLLEGE, CARUISLE BARRACK PA 17013-5050

Unclassified so a
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER j2. GOVT ACCESSION NO. RECIPIENT'S CATALOG NUMBER

4. TITLE (ad Subtitle) a. TYPE OF REPORT & PERIOD COVERED

The Utility of Ada for Army Modeling Individual Study Project

6 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(e)

Michael L. Yocom, COL, SC

9- PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA 6 WORK UNIT NUMBERS

U.S. Army War College
Carlisle Barracks, PA 17013-5050

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army War College 10 April 1990
Carlisle Barracks, PA 17013-5050 13. NUMBER OF PAGES

50
14 MONITOR C:N AaCNC, NAML ft ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thie report)

Unclassified

15a. DECLASSIFI CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (C,:ntlnue on reverse aide It neceesay and Identify by block number)

20. ABSTRACT ('CotimJe o revere &Ids if necoemary and Identlfy by block number)

The Ada computer prpgramming language was developed by the Department of
Defense. The DOD has mandated its use as the single, common high-order
language. A US Army Audit Agency audit of the Army Models Improvement Program
found that Ada is not being used for modeling. The audit stated that, for

Army modeling, either Ada must be used or a waiver must be obtained.

This study examines the Ada language and its use to date in order to judge

its utility for modeling within the US Army. The study provides technical

D O rIm 147, 3 F ITION or t NOV 65 IS O 05,LUnsTL
UncLassified OT __WeV___~SECURITY CLASSIFICATION OF THIS PA:'.E (WHen, V.et. f-.nteted)

Unclassified

SECURITY CLASSIFICATION Of THiS PAGE(Wha Data Entered)

and managerial evidence that Ada is potentially a very good computer
language for modeling when used to support modern software engineering
principles and object-oriented programming.

The study covers several major issues that impact on the decision to
use Ada. It examines the potential for software reuse and portability
within the modeling communities. Finally, it points out the necessity of a
common language and approach for all modeling in order to meet challenges
of the future family of models.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ABSTRACT

AUTHOR: Michael L. Yocom, COL, SC

TITLE: The Utility of Ada for Army Modeling

FORMAT: Individual Study Project
DATE: 10 April 1990 PAGES: 47

CLASSIFICATION: Unclassified

The Ada computer programming language was developed
by the Department of Defense. The DoD has mandated its use
as the single, common high-order language. A US Army Audit
Agency audit of the Army Models Improvement Program found
that Ada is not being used for modeling. The audit stated
that, for Army modeling, either Ada must be used or a
waiver must be obtained.

This study examines the Ada language and Its use to
date in order to judge its utility for modeling within the
US Army. The study provides technical and managerial
evidence that Ada is potentially a very good computer
language for modeling when used to support modern software
engineering principles and object-oriented programming.

The study covers several major issues that impact on
the decision to use Ada. It examines the potential for
software reuse and portability within the modeling
communities. Finally, it points out the necessity of a
common language and approach for all modeling in order to
meet challenges of the future family of models.

Ii

TABLE OF CONTENTS

Page

ABSTRACT

CHAPTER I. INTRODUCTION 1
Background of the Issue 3
Purpose of the Study 4
Methods and Sources 4
Scope and Limitations of the Study... 5

II. ADA BACKGROUND 8
The Software Crisis 8
Ada Development 10
Current Policy 12

III. MODEL DEVELOPMENT WITH ADA 14
Software Engineering. 15
Ada for Model Design 19
Software Reuse and Portability 22

IV. ISSUES IN THE USE OF ADA 28
Ada Compiler Issues28
Training Issues30
Schedule and Cost Issues 32
The Waiver Issue35

V. CONCLUSIONS AND RECOMMENDATIONS 40
Conclusions......... 40
Recommendations 42

BIBLIOGRAPHY. 45

Acussion POT-

INOP CTI ., TIC TAB" 0nn c me d E5

Justrlbutlon

By--_______
Dtstributloyb#

'Di Spea

THE UTILITY OF ADA FOR ARMY MODELING

CHAPTER I

INTRODUCTION

Two opposing forces, declining defense resources and

increasing cost, will cause the US military to turn more and

more to modeling in the decade of the 1990's. Computer-

assisted battlefield and weapon system simulation is more cost

effective and less destructive to the environment than actual

employment of weapons and vehicles. It is also more realistic

than ever before. The analytic and training communities have

been very successful in harnessing the power of the computer

to simulate the real world. As a result, we can predict that

the number, size and complexity of models will continue to

grow.

There are limits to this growth, however, and they apply

to all computer applications. Software currently defines the

limits on the utility of the computer. Software development

and maintenance costs now exceed hardware costs. System

complexity and reliability problems are increasing. These

general problems, coupled with our growing dependence on

computer technology, have been broadly described as a software

crisis. Chapter II provides the nature and history of this

crisis.

Military simulation and wargaming have certainly not been

exempt from the software crisis. One does not have to look

far for examples. An article in Military Modeling comments on

the Navy Resource Model, NARM:

"The NARM grew so complex, so lacked documentation of
many changes, and so suffered from turnover of its
operator-analysts that in due course the operators were unable
to justify its interactions. It had to be discarded."l

Unfortunately, the NARM project is not unique; most people

involved in military modeling will know of other examples.

Rather than dwell on past and existing problems, however, it

is more important to see the future challenges of military

modeling.

A vision for Army modeling in the decade of the 1990's

includes a family of models at echelons of command from crew

to theatre. Training models and simulators of different

resolution, driving exercises at various echelons, will be

linked, one feeding the other, and all running concurrently

from widely dispersed locations. Linkage will ensure

consistency of data bases and methodology.2 Similarly, a

hierarchical family of combat analysis models representing

various echelons and resolutions will be developed. Such

linkage will not necessarily be limited to models developed by

the Army. The Defense Science Board (DSB) Task Force on

Computer Applications to Training and Wargaming requires an:

"evolutionary movement (of models) toward interconnection
and interoperation (that) will yield standard interfaces and
standard techniques for translating data from a form suitable
for one model to a form suitable for another."3

Wilbur Payne does not see this future as "an effort to

2

develop a single, super model" but he believes agencies will

accept externally guided constraints on programming standards,

formats, etc.4 Obviously, a mandated modeling language is

one such constraint.

BACKGROUND OF THE ISSUE

In response to growing software problems and

requirements, DoD sponsored the development of the Ada

programming language during the 1970's. In 1987, DoD

established Ada as the single, common, computer programming

language for Defense computer applications.5

The Army Model Improvement Program (AMIP) is the formal

process through which the various Army agencies responsible

for model development will be guided.6 A US Army Audit

Agency (AAA) audit of the AMIP, dated 7 September 1989, found

that the Army is not following the DoD requirement for use of

Ada in Army analytical models and training simulations. The

audit stated that the Army should use Ada or request a

waiver.7 For US Army model clients, sponsors and analysts,

therefore, the utility of Ada as a computer language for

modeling is a current and relevant issue.

3

PURPOSE OF THE STUDY

Thp primary purpose of this study is to research,

analyze and recommend an Army position cn the use of the

DoD standard programming language, Ada, as a suitable and cost

effective modeling language. The technical and managerial

merits of Ada as a programming language for modeling will be

determined.

There are many rumors concerning Ada. This study will

document the experience and lessons learned from those who

have used Ada and have written about it. Ada issues that are

relevant to Army modeling will be explored.

A further purpose of the study is to provide the

background of Ada development and rationale for the DoD

mandate. Since few decision makers and modelers in the Army's

analytic and training communities have experience in the use

of Ada, background information can be helpful to understanding

the issue.

METHODS AND SOURCES

The study method employed is predominately qualitative.

Essentially, the study involves a review of textbooks and

periodical literature. Ideas, facts and issues as found in

the literature are presented as they relate to the study

topic. The study author draws inferences from the information

presented.

4

Principal sources are government publications and defense

related periodicals. Two college textbooks: Simulation, A

Problem-Solving Apprcach by Stewart Hoover and Ronald Perry

and Software Engineering with Aca by Grady Booch were very

useful. Telephonic interviews with people currently involved

in various aspects of this issue were used for background.

The inferences and conclusions drawn from these sources are

the author's, reflecting (limited) knowledge acquired during

six years experience as a computer systems analyst plus an

advanced degree in data processing.

The author is indebted to the operations research

analysts of the Center for Strategic War gaming in the US Army

War College for their instruction and valuable ideas. Any

lack of understanding of modeling or the use of Ada on the

author's part should not reflect on any of the sources

mentioned.

SCOPE AND LIMITATIONS OF THE STUDY

This study is generally confined to that portion of the

computer software domain that is applied to computer-assisted

modeling for military analysis and training purposes.

While it is understood that there are many types and uses

of military models, this study treats models in the generic

5

sense. Specific references may not hold for the entire model

taxonomy. This study is neither a rigorous examination of

modeling technique nor a programming course in Ada. The

syntax of the Ada language, which provides the capabilities

claimed in the literature, is beyond the scope of this papez.

Concepts, not code, are explored.

The scope of this study is limited to an evaluation of

the Ada language against a standard of utility for modeling.

This study does not evaluate other programming languages as

modeling languages or in comparison to the Ada language.

This study is limit d by industry's slight experience

with Ada and the fact that major military modeling projects

have scarcely ,,sed Ada at all. This study will not attempt to

establish scientific proof of any conclusions; it establishes

sufficient evidence to support inferences.

6

1 Wayne P. Hughes, editor, "Overview," Military Modeling,
Second Edition, 1989, p. 34.

2 U.S. Department of the Army, Combined Arms Training Activity,
Office of the Training Simulations Systems Manager, Family of
Simulations (FAMSIM) Strategy, 5 May 1989, pp. 18-20.

3 Anita K. Jones, Chmn., Report of the Defense Science Task Force
on Computer Applications to Training and War gaming, May 1988, p. 20.

4 Wilbur B. Payne, "Ground Combat Models," Military Modeling,
Second Edition, 1989, pp. 41,42.

5 Department of Defense, Directive 3405.1, Computer Programming
Language Policy, 2 April 1987, p. 2.

6 Department of the Army, Army Regulation 5-1 DRAFT: Army Model
Improvement Program, 23 December 1988, p. 5.

7 U.S. Department of the Army, Office of the Deputy Chief of
Staff for Operations and Plans, U.S. Army Audit Agency (USAAA) Audit
of Army Model Improvement Program (AMIP), 7 September 1989, p. 4.

7

CHAPTER II

ADA BACKGROUND

Why Ada? Why Ada for Army modeling? The second

question is best answered after explaining the first. This

chapter explains why Ada was developed by providing the

rationale, history, and policy for Ada.

THE SOFTWARE CRISIS

"Can We Trust Our Software? -- Computers are reliable

but the programs that run them are fraught with peril. Just

ask Ma Bell." So read the title of an article in a recent

"Newsweek" magazine.l The article said that the nine hour

outage of AT&T's telephone network was caused by: "a new

societal hazard of the '90's: the mysterious failure of a

complicated computer software program." The article

graphically portrayed the growing size and complexity of

software in systems upon which the public depends and the

damage brought about when software fails. The overextended,

massive national air-traffic-control system was used as an

example. Interestingly, reprogramming of the entire National

Air System (NAS) is underway and it is being done exclusively

in Ada.

8

Nature of the Problem

The introductory chapter and the AT&T example indicate

the nature of the software crisis but some specific symptoms

provided by Grady Booch are:2

- Responsiveness. Computer-based systems often do not

meet user needs.

- Reliability. Software often fails.

- Cost. Software costs are seldom predictable and are
often perceived as excessive.

- Modifiability. Software maintenance is complex,
costly, and error prone.

- Timeliness. Software is often late and frequently
delivered with less-than-promised capability.

- Transportability. Software from one system is seldom
used in another, even when similar functions are required.

- Efficiency. Software development efforts do not make
optimal use of the resources involved.

DoD Software Crisis

Actually, the software crisis was first publicized

back in the 1970's. At that time it was estimated that up to

400 different languages were being used in DoD weapons

systems.3 Each project office was virtually free to use

any language, or create a new language, for its system.

Since these systems are normally maintained by civilian

contractors, life cycle costs became a major issue. Today,

somewhere between 40% and 70% of DoD's ADP budget is spent on

software maintenance. Besides being costly, language

proliferation has diluted training efforts and limited

9

technology transfer among projects.4 Lack of language

standardization is not the only problem, however.

Software quality is also a major issue as "software

bugs" are sometimes found long after the product is

delivered, resulting in some dire consequences.

Another major problem is software maintenance.

Responding to changing requirements has often meant building

a new system. Old software could not be modified due to lack

of modularity, poor documentation, or both. Remember the

NARM cited in Chapter I?

Responding to the Crisis

Software developers must apply methods, languages, and

tools to help manage complex software solutions. Booch

mentions such software tools as: structured programming

techniques, data-flow diagrams, object-oriented development,

and integrated development environments.5 He says,

"The ultimate solution to the underlying problem of the
software crisis - namely, our human limitations - lies in the
application of modern software methods supported by a
high-order language that encourages and enforces these
principles in suitable development environments."6

ADA DEVELOPMENT

In January 1975, Malcolm Currie, Director of Defense

Research and Engineering (DDR&E) formed a joint-service High-

Order Language Working Group (HOLWG). The purpose of the

HOLWG was to identify requirements for DoD high-order

10

languages, evaluate existing languages against the

requirements, and recommend the adoption of a minimal set of

languages.7 Over 200 people, representing 85 DoD

organizations, 26 industrial contractors, and 16 universities

participated in the refinement of the early requirements.

Most groups required a language that would support modern

software engineering principles such as structured

constructs, abstraction, and information hiding. Constructs

for real-time control and exception handling were also

required.8 The outcome of the requirements analysis phase

was the conclusion that no high-order language existing at

that time met the software engineering requirements. The

experts deemed it necessary and feasible to develop a new

language that would meet requirements.

OoD used an international competition for design of the

new programming language and issued a Request for Proposal

(RFP) in April 1977. Of an initial seventeen, four

contractors continued the competition into the detailed

design stage. In May 1979, the winner of the design

competition was announced and the language was formally named

"Ada" for Ada Lovelace (1815-1851), a mathematician who

worked with Charles Babbage on his difference and analytic

engines.9 Later in 1979, the HOLWG initiated a contract to

develop a compiler validation facility and established an Ada

Board to manage language changes. It approved the first

version of an Ada reference manual in August 1980. This

11

,eference manual was approved as an ANSI (American National

Standards Institute) standard on 17 Ftoruary 1983. DoD

establisned a policy mandating the use of Ada for all new DoD

mission- critical applications beginning in 1984.

CURRENT POLICY

As established by DoD Directive 3405.1, DoD policy is to

"satisfy functional requirements, enhance mission
performance, and provide operational support through the use
of -- ern software concepts, advanced software technology,
soft. e life-cycle support tools, and standard programming
languages."O10

Further, it is policy to limit languages to facilitate

achievement of the goal of transition to the use of Ada for

software development. While mandated for mission-critical

applications, other applications must use Ada except where

another approved language can be shown to be more

cost-effective over the application's life cycle. All major

upgrades in existing systems should be done in Ada.

The US Army policy and guidelines for implementing Ada

as required by DoD are contained in HQDA LTR 25-88-5, dated

21 June 1988. The letter applies to all computer resources

used to develop, modify, maintain, or support Army software.

12

1Michael Rogers and David L. Gonzalez, "Can We Trust Our

Software?," Newsweek, 29 January, 1990, pp. 70-73.
2 Grady Booch, Software Engineering With Ada, p. 8.
3 "Making Ada Happen - An interview with Joseph

Dangerfield," Defense Science & Electronics, December 1986,
p. 30.

4 Ibid., p. 15.
5 Booch, p. 11.
6 1bid.

7 Ibid., p. 16.

8 Ibid., p. 17.

9 Ibid., p. 21.
1 0 U.S. Department of Defense, Directive Number 3405.1,

p. 2.

13

CHAPTER III

MODEL DEVELOPMENT WITH ADA

Software engineering, object-oriented programming, and

software reuse are not likely to be topics of conversation at

a MORS (Military Operations Research Society) symposium

dinner. Those who are concerned with modeling do not normally

consider che "goodness" of a model to depend on the quality of

the software any more than writers would judge the goodness of

a book by its binding and printing. Brilliant ideas, poorly

expressed, may not be read, understood, and used, however. So

it is with military models whose conceptual design is

extraordinary but whose software is so complex, poorly

expressed and unstructured that it is not understandable,

efficient, reliable, and modifiable.

Traditionally, the criteria for goodness of models have

not explicitly included good software design and programming

principles. Chapter one, "Overview," of Military Modeling

describes good models with qualities like: robustness,

predictive power, accuracy, transparency, realism, relevance,

reproducible, convenience, flexibility, and sensible.l Are

these qualities sufficient?

In most military models of significance, the software

design and coding of a model are done by contract for a

government client or sponsor. When the computer model is

fielded and used, many military analysts must learn the model,

interpret its results, and either perform studies for decision

14

makers or establish useful war games and exercises.

Understandability of the computer code, therefore, is an

important criteria of goodness in models. Modifiability is an

additional quality required of computer models. Models are

often modified to support changing requirements or to perform

sensitivity analysis. Further, models must be efficient so

that they provide a timely response to users who interact with

them. Lastly, models should not have software bugs. They

should perform as prescribed; that is, they should have the

quality of reliability.

There are four properties which are recognized and

accepted as goals for software engineering: modifiability,

efficiency, reliability, and understandability.2 Software

engineering applies a set of tools and principles to software

development. It is a discipline that has been accepted by

industry and DoD. The measures of goodness of models,

therefore, should include sound software engineering as well

as the traditional qualities. This chapter describes how Ada,

plus modern software engineering and design, supports quality

computer modeling. The government client should demand no

less.

SOFTWARE ENGINEERING

Ada was designed to support modern software engineering.

15

As a design and implementation language it has many features

and capabilities which make it particularly useful for large

computer simulation projects. Dr. Matt Narotam, commenting on

simulation issues, says the following:

"Customers like to believe that they are getting what they
asked for. Even when the customer and the contractor have the
best of intentions, it doesn't always work out that way
Considering the complexity and technical sophistication of
today's products, there are many reasons for this. One is
that those plans aren't laid well enough that it is clear
in either the customer's or the contractor's minds what
really is required. Any approach, technique or tool that
helps to solve this problem will prove useful and
valuable. In the simulation industry ... software systems
engineering and Ada will help solve the problem."3

Software Engineering Principles

Software engineering is defined as "the application of

sound engineering principles to the development of systems

that are modifiable, efficient, reliable, and understand-

able." 4 The software engineering principles are:

abstraction, information hiding, modularity, localization,

uniformity, completeness, and confirmability.5

The principles of software engineering apply to any

software project but they seem natural to model design and

development. Conceptually, models have always involved most

of these principles. What may be new is that they can be

applied to all steps in the modeling process: analysis,

programming, testing, verification and validation.

16

Abstraction and Information Hiding

As mentioned before, models are abstractions; they extract

essential properties from the real world. Abstraction reduces

complexity. Abstraction helps in maintaining and

understanding systems by reducing the details one needs to

know at any given level. Furthermore, "we enhance the

reliability of systems when, at each level of abstraction, we

permit only certain operations and prevent any operations that

violate our logical view of that level."6 Information hiding

makes inaccessible certain details that should not affect

other parts of a system.

Modularity and Localization

Modularity is another tool for managing the complexity of

large software systems. Modularity has been called

"purposeful structuring."7 Booch points out that

higher level modules normally relate to our high-level

abstractions. "A higher level module will specify what action

is to be taken, while the lower lavel modules define how the

action is to be carried out."8 Localization is concerned

with defining the interfaces with other modules in a very

specific manner to support independence of the module. In a

well-structured model, we should be able to understand any

module relatively independently of other modules. By

17

localizing we can limit the results of a modification to a

small set of possible modules. Overall, modularity and

localization support modifiability, reliability, and

understandability of large models. Implemented in Ada, they

support software reuse as w.ll be discussed later.

Uniformity, Completeness, and Confirmability

Uniformity in coding style, across different submodels

and modules, greatly assists in understandability of the

model. The principle of uniformity calls for minimizing

unnecessary differences, such as in control structure or

calling sequences. This principle is particularly important

for models that are used by analysts other than the builder.

It is also important for the verification process. The

principle of completeness means that all important elements of

the problem are included in a module. "In a sense,

abstraction and completeness help us develop modules that are

necessary and sufficient."9 The principle of confirmability

has to do with developing our system so that the parts,

modules and submodels, may be tested and verified in

isolation. Ada is a strongly typed language. This means that

objects (nouns of the language) of a given type (set of

properties) may take on only those values that are appropriate

to the type and, in addition, the only operations that may be

applied to an object are those that are defined for its

18

type.lO With its strong typing, Ada can aid in making the

modules of a model confirmable.

ADA FOR MODEL DESIGN

In the management of complex modeling projects, software

engineering principles are important but they must be applied

according to a disciplined design method. Booch gives three

methods of software design as: top-down structured design,

data-structure design, and object-oriented development.ll

Discussion of each method is beyond the scope of this paper;

however, it is important to note that most of Booch's textbook

is devoted to the use of Ada in object-oriented design. This

design method is particularly useful for modeling.

Object-oriented development

Using object-oriented techniques, each nodule in the

system represents an object, (such as a truck), or class of

objects, (such as vehicles), from the real world. Applied to

modeling, we can map the abstractions of our conceptual model

directly to modules of the computer model. We define the

objects, their attributes, the operations that affect each

object, the visibility of each object in relation to others,

and the interfaces of objects.12 Ada may be used with any

development method but, with abstraction and information

19

hiding, it supports object-oriented development techniques

quite well.

Examples of Ada modeling, using an object-oriented

approach, are not readily found. However, the following

description of the Army's prototype Command, Control,

Communications and Intelligence, C31, application for the

Worldwide Military Command and Control System Information

System, WWMCCS, could apply equally well to modeling.

"The application ... models the user's world in a

software form ... Entities represent the objects that define
the user's world. For example, in a tacti:al mission
planning system, the entities might include aircraft,
threats, weapons, targets, weather and intelligence. Each of
the objects would have its own Ada package to define the
object by its important attributes. For example, an aircraft
might be described by its tail number, type, maximum range,
maximum speed, maximum takeoff weight and ordnance capacity.
The' object-oriented approach improves system
maintainability." 13

Program Oesign Language

Ada is not just an implementation (programming) language, but

it is expressive enough to serve as a means of capturing

design decisions. Many of its features are inherently useful

for expressing both preliminary and detailed design form. In

recent years, program design languages (PDL) have been used as

an alternative to flow charts in documenting software design.

POLs improve communications among software designers,

20

programmers, and managers (clients) through the use of

commonly understood terms and concepts. DoD has mandated the

use of POLs as part of the DOD-Std-2167.

Ghazarian recommends an Ada-based POL, Ada/POL.14 He

points out that the use of an Ada/POL can serve as a migration

path leading to full use of Ada. Also, "Training required to

use an Ada/POL results in many people at all levels

understanding the Ada language and the software engineering

principles it supports." Ghazarian also mentions one POL

processor, the Ada-based design and documentation language

(ADADL), which has a number of software tools specifically

designed to document and assist design decisions. Its

products include documents suitable for DoO/Std-2167

requirements. 1 5 These documents could be useful for

verifying models and for training user analysts in the field.

Castor and Preston note that "Once a system is designed

in an Ada POL, the Ada definition of types and module

specifications are directly used in coding and the code

evolves through iterative enhancement of the design

documents." 16 This fact is offered as one explanation for

the observation that increased effort goes into the design

phase and decreased effort goes into the coding phase of

software projects when using Ada.17

21

SOFTWARE REUSE AND PORTABILITY

One of the principal requirements in the design of the

Ada language was to control software costs by being portable

and by supporting software reuse. Portability means that

the software is not dependent on a specific rui, time

support system (the computer platform and operating

system). All certified Ada compilers must be validated

periodically at a central facility in order to ensure that Ada

software is portable. Additionally, the stability of the

language is vigorously guarded and no subsets or supersets are

tolerated.

A benefit of reuse is that rather than building up a

complex system from scratch, it is possible to reuse already

existing data structures and algorithms, composing systems

from parts that are known to work well.1 8 Stability and

portability of Ada program code mean Ada offers an excellent

vehicle for expressing reusable software components.

Additionally, certain features of the language support reuse.

It has great expressive power, through a rich collection of

verbs and flexible riles for noun construction, so that small

modules or packages can be understood. Strong data typing,

mentioned earlier, aids in readability but also helps ensure

that software modules are protected from unexpected or

inappropriate ooerations. Further, the Ada language supports

structured programming; the elements of an Ada program are

22

small Ada packages, each of which accomplishes a limited

function. Ada packages could be reused by other Ada

systems.

Having a library (or repository) of reusable software

components, we can develop systems more rapidly since we have

less software to write and we have greater confidence in the

stability of the components themselves. We can also ensure

common definitions of modeled objects and standard treatments

of attrition, movement, etc. This could be a major advantage

if we want methodologies to be parallel between all models.

Opportunities for reuse and portability

Ellis Horowitz reports that "a study done at the missile

Systems Division of the Raytheon Company observed that 40 to

60 percent of actual program code was repeated in more than

one application." 1 9 Booch cites a study by Caper Jones

which concludes that of all the code written in 1983, probably

less than 15 percent was unique, novel, and specific to

individual applications.2 0 Undoubtedly, the same can be

said of military models particularly in the pre- and

post-processors of large systems. "After 40 years of

practice, few models are designed anew: mostly they are

adaptations or, for persistent problems, products of

evolution. "21

23

Wilbur Payne, noting the incentives for hardware

compatibility states, "the benefits of easy software exchange

between several strong research groups now greatly outweigh

any benefit from keeping up with hardware state-of-the-

art." 22 With Ada, we can "have our cake and eat it too." It

becomes possible to take advantage of the rapid progress in

hardware capability, with validated Ada compilers for that

hardware, and still benefit from software exchange. Given Ada

code cortability and machine independence, entire models could

be mac- n on a variety of platforms without software

modificatic. Software reuse libraries, used elsewhere in

industry and the DoD, may be the most efficient means to

achieve easy software component exchange, as well as,

standardization.

The Defense Science Board (DSB) Task Force Report on

Computer Applications to Training and Wargaming noted the

redundancy and overlap caused by each service And the JCS

developing simulations independently.2 3 The report

recommended creation of a shared simulation-date repository

with encoded d- i descriptions for such common information as

weapon system Labilities, mobile platform capabilities,

threats, e* Ada packages, modules, and programs

could Idd in a central software reuse facility

(l>*;ary/repository) for modeling. The report further

recommended that the Chairman, Joint Chiefs of Staff should

cause the service and joint models to interoperate and

24

internet. 2 5 Software reuse permits that standardization

which is a prerequisite for interoperation and internetting.

25

Wayne P. Hughes Jr.,editor, "Overview," Military modeling, 1989,

pp. 1-43.

2 Grady Booch, Software Engineering With Ada, p. 29.

3Matt Narotam, "Simulation: Getting On With Ada," Defense Science

Electronics, October 1987, p. 39.

4 Booch, p. 42.

5 Ibid., p. 31.

6 Ibid., p. 33.

7Ibid.

8 Ibid.

Ibid., p. 35.

10 Ibid., p. 103.

Ibid., p. 36.

12 Ibid., p. 48.

13 Mark H. Sutton, "Army's C31 Software to Join Ada, Open Systems,"
Government Computer News, 13 November 1989, p.64.

14 Saro B. Ghazarian, "Using Ada as a Software Design Tool," Defense

Electronics, October 1987, p. 129.

15 Ibid., p. 130.

16 Virginia L. Castor and David Preston, "Programmers Produce More

With Ada," Defense Electronics, June 1987, p. 168.

17 Ibid.

18 Grady Booch, "Reusable Software Components," Defense Electronics,

May 1987, p. S57.

19 Booch, "Reusable Software Components," p. S58.

20 Ibid., p. S57.

21 Hughes, p. 12.

22 Payne, p. 141.

26

23 Anita K. Jones, Report of the Defense Science Board Task Force on
Computer Applications to Trai3-Tn-and Wargaming, a.

24 Ibid., p. 22.

25 Ibid., p.21.

27

CHAPTER IV

ISSUES IN THE USE OF ADA

This chapter covers several managerial issues that

will have a large impact on the decision to use Ada. "The

decision to use Ada for a given program is thus fundamentally

a business decision, not a technical one." says Major General

Salisbury (US Army Ret).l While the previous chapter was

concerned with the technical decision, this chapter deals with

the business decision to use Ada for modeling.

ADA COMPILER ISSUES

Availability of Compilers

The Ada Information Clearinghouse, Ada Joint Program

Office, publishes the Ada Validated Compiler List monthly.

The November list contained 208 base compilers and 72

compilers derived from base implementations.2 The list

includes most all the recent model computers ranging from the

largest mainframes, e.g., CRAY, to personal computers such as

IBM PC's, PC compatibles, and Mac Intosh. The complete

Digital Equipment Corporation family of VAX, VAXstation, and

MicroVAX computers are supported. The popular SUN workstation

has an Ada compiler. Ada compilers are now plentiful enough

that availability should not preclude the use of Ada for new

modeling applications. Additionally, the more popular

28

computers have more that one compiler manufacturer.

Validation Process

For each listed compiler, the complete "Ada implementation" is

validated, including the Ada compiler, linker and any other

necessary software with its host computer. The validation

ensures conformity of Ada implementations with the standard

ANSI/MIL-STD-1815A (1983) Ada Programming Language.

Conformance is measured by running a set, (called a suite), of

test programs. The suite of test programs makes up the Ada

Compiler Validation Capability (ACVC) which is changed every

18 months. All Ada compilers must be validated on each new

ACVC in order to maintain certification.3 This process

insures portability and language purity to a greater degree

than any other programming language.

Speed, Efficiency, Performance

Validation ensures legitimate Ada code but it says

nothing of the compiler speed and efficiency. Myers defines

the criteria for compiler performance most clearly:

"To reach production quality a compiler has to translate
source code to object code at a reasonable rate, it has to

produce an amount of machine code that does not greatly exceed
that obtained from assembly-language programming, and the

execution speed of this code must be comparable to that of

assembly-language machine code."
4

Compiler performance is not a strength of Ada to date.

"It is currently difficult to ignore the fact that the

29

present generation of Ada compilers usually produces code that
requires between two and five times more storage (memory) and
executes between two and five times slower than the equivalent
code wricten in C (the other third-generation language)." 5

This difference is partially offset, however, by the strong

type characteristics of Ada which will catch typing errors

that the programming language C, for example, will not. It

should require fewer compiles with Ada to catch all errors.

At any rate, small Ada modules are compiled and tested

independently, perhaps at programmer workstations, and brought

(linked) together at integration time. We can expect the

performance of Ada compilers to drastically improve in the

face of competition as the Ada industry grows.

TRAINING ISSUES

Trained Programmers

The subject of training sharply divides the pessimist

from the optimist. Reporter Brad Bass, Government Computer

News, says that the reason the government has been so slow in

adopting Ada is, "scarcity of skilled Ada programmers, lack of

federal funds for Ada training and complaints that Ada is too

complex." 6 Programmers with Ada experience tend to reject

government jobs because of noncompetitive salaries. Because

Ada programmers are in short supply today, they are routinely

offered 30 percent higher wages than non-Ada programmers in

the commercial sector.7 On the other hand, there are those

who believe: "the adoption of Ada at the universities should

30

accelerate, and by the early 1990s should provide larger pools

of Ada-fluent programmers to both DoD and commercial

environments."8

Gerhardt believes the real difficulty in learning Ada is

that it is not like previous languages. He says:

"Not everyone can learn Ada. Ada is the first language
intended for widespread usage emphasizing formality and
abstraction. It is wrong to expect that everyone who is
presently doing software can learn Ada."9

On the other hand, Col. James Thomes, who established the

first Air Force Ada training program, strongly believes that

Gerhardt and others are scaring off the very students who we

need to be future programmers. Some Ada experts are making

students believe that they need to know software engineering

before they can understand Ada. Thomes says it is not so,

"Software engineering is vitally needed, but so is a standard

high-order language. And let's not merge the two so closely

today that we scare off the millions of students and hackers

who are going to be the programmers we need tomorrow."lO

Government Analyst Training

First, we should consider who actually performs detail

design and coding of the computer programs that comprise

military models. If the model is a large project, chances are

it is contracted to a commercial firm. Those firms will build

Ada modeling expertise if their contracts specify it. In the

commercial world, supply will equal demand.

31

There will be a need for training many analysts in the

training and analytic communities of government. For the most

part, however, the proficiency needed by analysts is the

ability to read and understand Ada code. Some will

participate in model design through an Ada-based Program

Design Language. Given the expressive power of the language

and good software engineering in model construction, there

should not be a tremendous training burden for those who use

and read models written in Ada. The government need not train

analysts to be Ada programmers. Most analysts will develop

considerable expertise with the language through exposure on

the job. Considering that, at present, operator-analysts who

use and interpret models are confronted with a variety of

program languages, often in a single model, the benefit of

standardization on one language will be well worth the effort

to learn Ada.

SCHEDULE AND COST ISSUES

Project managers have a natural aversion to risk and they

are, therefore, particularly concerned with using a new

language when they have tight schedules and budgets. While

the Army's long-term interest may favor accepting short-term

risks for long-term reuse, maintainability, and life-cycle

cost benefits, the project manager does not have the long

view. The critical question on everyone's mind is whether Ada

32

will live up to its long-term promise and justify assumption

of short-term risks. Should the Army force the project

manager or model sponsor to take on additional risk in the

short-term in order to achieve benefits that will outlive the

project or model development period?

Development Time

The results of various size projects in DoD and the

commercial sector have shown, generally, that Ada developments

take more time in the design phase but less time in the

coding, testing, and integration phases of projects.

Increased effort in the design phase has been necessary to

insure good engineering, design software for potential reuse,

and optimize modularity. The longer design phase, in which no

code is produced and there is nothing to show, makes managers

nervous. It requires faith to believe the project will come

together at the late hour to make the deadline. Another

generalization is that the larger and more complex the

project, the more it favors Ada.

So what is the evidence that project managers or model

sponsors can look to? Win Royce of Lockheed shares the

following:

"One of the big problems with Fortran systems is that we
typically run 15 months doing final integration and test with
our big half a million lines of code plus systems. With Ada,
however, the programmers integrate their code in four hours...
In their private coding and testing they are getting rid of
all the errors that normally plague integration and test."ll

33

Against an accepted industry norm for programmer productivity

of between 325 and 400 lines of code per programmer-month,

studies show production rates with Ada of between 311 and 1400

lines of code per programmer-month.12 In addition, a

considerable decrease in development time should be realized

when software reuse becomes routine. Software reuse will have

a major impact on development time and cost.

Life cycle costs

The promise of Ada for reducing software costs has been

mentioned frequently throughout this paper because cost was a

primary reason for developing the language. Design of

software for maintainability, portability and reuse is focused

on reduction of life cycle cost. Ralph Crafts, president of

the Ada Software Alliance lobbying group, is said to have

argued that "Congress could meet the Gramm-Rudman deficit

reduction target simply by establishing a national software

engineering policy with Ada as the standard language."13

Whether these cost savings will match the rhetoric has yet to

be demonstrated. All indications are promising but few Ada

projects have been around long enough to prove maintenance

cost savings upon which life cycle savings are dependent.

Actually, it may not be fair to judge the merits of Ada

on the earliest projects. The pioneers in the use of Ada are

finding that the real benefits are not realized until the

second or third project. In fact, the development costs for

34

the first Ada project may be higher than with a familiar

language due to start-up costs like training, support tools,

etc.14

THE WAIVER ISSUE

The growth of the Ada industry, (producers of compilers

and programmer support tools, training organizations,

consulting firms, and the like), has been slower than many

expected or would have liked. In a vicious circle, waivers of

the DoD mandate have been awarded generously, due in large

part to the non-availability of the compilers, tools,

training, etc. Granting of these waivers reduced the customer

base upon which the emerging Ada industry depended in order to

amortize its R&D investment.15 Due to lack of investment,

Ada support tools have been slow in development. Parris and

Olsen comment, "Governmpnt policies were strongly worded, but

compromised regularly, at the project level."16 Fortunately,

it appears that a wide variety of Ada tools and services are

available now. The "4th Annual Directory of Ada Tools and

Services" shows that 94 companies are in the Ada business.1 7

The Ada industry should continue to flourish since recent

indicators are that there will be far fewer waivers in the

future.

Frequently, programmers, themselves, argue against an Ada

mandate. "Software languages are tools and you want to use

35

the appropriate tool," said a non-Ada programmer working on a

Navy contract. "You wouldn't tell carpenters they have to use

a screwdriver on every job."18 A computer scientist at the

Census Bureau says that programmers will continue to use other

languages unless managers push them into Ada. Further, he

continues, "Nobody has said, 'Yes, I want to use Ada and train

my people to use it,' hence, people have decided to use what

they know best."19

Probably, the strongest argument for vigorous enforcement

of the Ada mandate is standardization. Thomes provides

examples of non-DoD program managers that have chosen Ada, not

because Ada is so great for the particular application, but

rather that it is a standard. As a standard, "it will allow

software engineers to deal with millions of lines of code

written by many people, on many different kinds of

machines."2 0 From a corporate view, it may be argued that

doing things the same way is more important than doing them

the best way.

Another argument is that DoD has spent billions of

dollars to develop Ada and make it work and DoD has an

organization in place to control the language, insuring its

portability, etc. DOD should orotect its investment.21 The

waiver q'jthority should beware of the low bid rationale for

granting a waiver. Salisbury provides the following caution:

"The reality is that a competitively awarded contract
calling for implementation of a vendor-unique and proprietary
solution will generally lead to a substantial series of

36

follow-on, sole-source procurements for system enhancements
and upgrades throughout the (usually extended) system life
cycle. These may, in fact, be far greater in total value than
the original procurement."22

A final point to consider in granting an Ada waiver to a

project manager is to realize that Ada's savings and other

benefits are long-term. Unless program managers have

stabilized assignments, their natural short-term risk aversion

tendencies will overcome their concern for life cycle costs,

reuse, and maintainability.

37

Alan B. Salisbury, "Ada and MIS," Defense Science,

May 1988, p. 66.

2 Ada Information Clearinghouse, Validated Ada Compiler List,

1 November 1989, pp. 1-51.

3lIi___.d, -,. 57-59.

4Ware Myers, "Ada: First users - pleased; prospective users -

still hesitant," Computer, March 1987, p. 70.

5 Mark Christensen, "Is C Better Than Ada?" Journal of Electronic

Defense, January 1990, p. 44.

6 Brad Bass, "Complexity Keeps Ada From Reaching Its Potential,"

Government Computer News, 13 November 1989, p. 67.

7James T. Thomes, "Ada as a National Standard Programming

Language," Defense Science, October 1989, p. 83.

8 Scott W. Parris and Eric W. Olsen, "The Economics of Ada,"

Defense Science, February 1988, p. 43.

9 Mark S. Gerhardt, "Don't Blame Ada," Defense Science &

Engineering, August 1987, p. 54.

10 Thomes, p. 84.

11 Myers, p. 70.

12 Caster and Preston, p. 165.

13 Bass, p. 67.

14 Eileen Quann, "Great Expectations: Evaluating Results From

First Ada Projects," Defense Science, August 1989, P. 42.

15 Parris and Olsen, p. 42.

16 Ibid., p. 41.

17 "4th Annual Directory of Ada Tools & Services," Defense Science,

August 1989, pp. 44-45.

18 Bass, p. 69.

19 Ibid.

20 Thomes, p. 82.

38

21 -Ibid., P. 83.

22 Salisbury, p. 74.

39

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The primary purpose of this study is to research,

analyze and recommend an Army position on the use of Ada as a

modeling language. Research of the available literature,

primarily defense periodicals, reflects the views of a

broad spectrum of Ada users and other experts. Analysis of

these views, coupled with textbook study, has led to the

following conclusions and recommendations.

CONCLUSIONS

The bottom line conclusion to be drawn from the evidence

available is that Ada is potentially a very good modeling

language when used with modern software engineering

principles. From a technical standpoint, Chapter III

provided a description of the use of modern software

engineering and object-oriented programming with Ada and

related this programming to the development of military

models. The research revealed no evidence that cast doubt on

the suitability of Ada, with its software features and design

characteristics, as a programming language for Army modeling.

On the contrary, one may use the logic that follows: 1) Ada

was designed to support modern software engineering and

object-oriented programming, 2) Ada accomplishes these design

aims in a superior fashion, 3) Object-oriented programming is

40

commonly used for modeling, 4) Software engineering

techniques are, to a degree, inherent goals of good models,

5) It follows that Ada is potentially a superior modeling

language.

A further purpose of this study was to document Ada

experience and lessons learned in order to identify and

draw conclusions regarding what can be termed business

issues. The first of these business, or managerial, issues

concerns Ada compilers.

The study provides evidence to conclude that a

sufficient diversity of computers have Ada compilers that

this would not be a handicap in the use of Ada for modeling.

Compiler performance is a concern; however, there is no

evidence to determine that compiler speed would rule out the

use of Ada.

Concerning training, some amount of Ada training will be

required for those in the training and analytic community who

have firsthand contact with models programmed in Ada. The

study concludes that the benefits of a standard modeling

language will offset the time and expense of one-time Ada

training.

The study also concludes that Ada provides a software

reuse capability which could benefit the modeling community

if standard modeling procedures and data descriptions were

41

developed and exchanged. Further, the portability of models

across computer platforms by using Ada would permit a greater

use and proliferation of models.

There is insufficient evidence to draw a conclusion

regarding the long-term maintenance cost savings promised by

Ada. Maintenance cost savings cannot be assessed until major

Ada products have matured in the field. Although the

potential of software reuse and long-term maintenance savings

has yet to be fully realized, most authors remain of the

opinion that they will occur.

Concerning the development time and scheduling

implications of using Ada, the evidence shows that design

will normally take longer than with other software languages.

However, coding, integration and testing time will be

reduced. While the internal milestones for an Ada project

may change, total development time should not be longer using

Ada than other languages.

Lastly, the plans for modeling in the future provide

ample evidence to conclude that a degree of control and

standardization will be necessary in order to avoid old

problems and achieve modeling goals.

RECOMMENDATIONS

Having concluded that Ada has utility for Army modeling,

from both a technical and a managerial standpoint, this study

42

recommends its mandatory use in all major Army models. All

contracts and study proposals involving software should

specify Ada and software engineering standards.

Waivers should be granted rarely and only for overriding

and convincing technical issues or for small time-sensitive

projects that are done in-house by an analysis agency.

Additionally, for those cases that warrant a waiver, it is

recommended that the Army consider promoting one of the

existing simulation languages, such as SIMSCRIPT 11.5, as an

approved high-order language. The evidence to support such a

recommendation is outside the scope of this study but is

valid none-the-less.

The Army Models Committee should consider the potential

for software reuse in the modeling community. Use of

prebuilt software, even within the Army analysis community,

will require a central office of responsibility for such a

reuse library and a commitment by all agencies and users to

participate. That office should also have configuration

management over reusable components. Software exchange could

extend beyond the modeling communities to ensure consistency

and efficiency in representing organizations and equipment

across the Army and all services. For example, the same user

entities described earlier for the Army C31 prototype could

be used in all simulations to ensure commonality. The

43

benefits to be gained: efficiency, reliability,

standardization, and development time, would seem to justify

the costs associated with reusable software libraries.

Concluding the adequacy of Ada for modeling and the

benefit of standardization is not to say that the language

should never change or improve. Ada is a third generation

programming language. Fourth generation languages are

entering the marketplace. In time, Ada should be upgraded to

incorporate new software technologies. The Army Models

Committee should be active in Ada developments to insure the

language progresses to support future modeling requirements.

44

BIBLIOGRAPHY

1. "4th Annual Directory of Ada Tools & Services."
Defense Science, August 1989, pp. 44-45.

2. Ada Joint Program Office Information Clearinghouse,
Ada Validated Compiler List. The Pentagon: Nov 1989.

3. Bass, Brad. "Complexity Keeps Ada From Reaching Its
Potential." Government Computer News, 13 November 1989,
pp. 67-69.

4. Belanger, Ron., et al. ModSim: a Lanquage for
Object-Oriented Simulation Tutorial, CACI Products,
La Jolla, CA, 30 October, 1989.

5. Booch, Grady. Software Engineering With Ada. Menlo
Park: Benjamin/Cummings Publishing Company, 1987.

6. Booch, Grady. "Reusable Software Components." Defense
Electronics, Vcl. 19, May 1987, pp. S53-S59.

7. Castor, Virginia L. and Preston, David. "Programmers
Produce More With Ada." Defense Electronics, Vol. 19, June
1987, pp. 165-171.

8. Christensen, Mark. "Is C Better Than Ada?" Journal
of Electronic Defense, January 1990, pp. 44-46.

9. Dortenzo, Megan. "Ada PC Environments Offer A Change
From Mainframes." Government Computer News, November 1989,
pp. 63-68.

10. Firesmith, Donald G. "Should the DoD Mandate a
Standard Software Development Process?." Defense Science &
Electronics, Vol. 6, Part 1: April 1987, pp. 60-64, Part 2:
July 1987, pp. 56-59.

11. Gerhardt, Mark S. "Don't Blame Ada." Defense Science
& Electronics, Vol. 6, August 1987, pp. 53-54.

12. Ghazarian, Saro B. "Using Ada as a Software Design
Tool." Defense Electronics, Vol. 19, October 1987, pp.
129-132.

13. Gordon, Geoffrey. Sstem Simulation. Englewood
Cliffs: Prentice-Hall, 1969.

45

14. Hayes, Richard E., and Horton, Susan M. "War Gaming,
Modeling and Simulation for C2 Training." Signal, Vol. 43,
No. 11, July 1989, op. 31-35.

15. Hoover, Stewart V., and Perry, Ronald F. Simulation
A Problem-Solving Approach. New York: Addison-Wesley, 1989.

16. Hughes, Wayne P., ed. Military Modeling. Military
Operations Research Society, 1989. Pp. 1-43T "verview," by
Hughes and Pp. 129-144: "Ground Battle Models," by Wilbur B.
Payne.

17. Joint Staff (J-8). Catalog of Wargaming and Military
Simulation Models. llth Ed. Washington, 1989.

18. Ledgard, Henry F., Ada, An Introduction. New York:
Springer-Verlag, 1981.

19. "Making Ada Happen - An interview With Joseph
Dangerfield." Defense Science & Electronics, Vol. 5,
December 1986, pp. 30-36.

20. Miller, Howard W. "Quality Software: The Future Of
Information Technology." Journal of Systems Management,
December 1989, pp 8-14.

21. Myers, Ware. "Ada: First users - pleased;
prospective users - still hesitant." Computer, March 1987,
pp. 68-73.

22. Narotam, Matt. "Managing Ada Applications." Defense
Science & Electronics, Vol. 6, May 1987, pp. 19-20.

23. Narotam, Matt. "Simulation - Getting On With Ada."
Defense Science & Electronics, October 1987, pp 39-41.

24. Parris, Scott W. and Olsen Eric. "The Economics of
Ada." Defense Science, Vol. 7, February 1988, pp. 41-43.

25. Passafiume, John F., Ada Education for Technical
Managers. Cameron Station: Oe-fense TechnrciaInformation
Cer, Defense Logistics Agency, 1981.

26. Poza, Hugo B., and Cupak, John J., "Ada: The Better
Language for Embedded Applications." Journal of Electronic
Defense, January 1990, pp. 47,49.

46

27. Quann, Eileen, "Great Expections: Evaluating Results
From First Ada Projects." Defense Science, August 1989,
p. 42.

28. Salisbury, Alan B. "Ada and MIS." Defense Science,
Vol. 7, May 1988, pp. 66-74.

29. Shields, Jim. "Halo Delivers Colorful Graphics to
Ada Compilers." Government Computer News, 13 November 1989,
p. 66-67.

30. Sutton, Mark H. "Army's C31 Software to Join Ada,
Open Systems." Government Computer News, 13 November 1989,
p. 64.

31. Thomes, James T. "Ada as a National Standard
Programming Language." Defense Science, October 1989,
pp. 82-84.

32. U.S. Department of the Army, Army Reoulation 5-11
DRAFT: Army Model Improvement Program. Washington: 28
December 1988.

33. U.S. Department of the Army, HQDA LTR 25-88-5,
Subject: Army Implementation of the Ada Programming Language,
21 June 1988.

34. U.S. Department of Defense, Directive Number 3405.1,
Subject: Computer Programming Language Policy, 2- ApriT-T87.

35. U.S. General Accounting Office, Status, Costs, and
Issues Associated With Defense's Implementation of Ada,
GAO/IMTEC-89-9, March 1989.

36. Woodward, Herbert P. "Ada - A Better Mousetrap?"
Defense Science, November 1989, pp. 56,59.

47

